FoCS:

Probability and
Naive Bayes Classification

Niema Moshiri
UC San Diego SPIS 2019

Sentence Sentiment

- Imagine your crush walks up to you to talk, and she says...

Sentence Sentiment

- Imagine your crush walks up to you to talk, and she says...

You're

Sentence Sentiment

- Imagine your crush walks up to you to talk, and she says...

You're pretty

Sentence Sentiment

- Imagine your crush walks up to you to talk, and she says...

You're pretty annoying

Sentence Sentiment

- Imagine your crush walks up to you to talk, and she says...

You're pretty annoying

- How did a single word change things so much?

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes
- Flip a coin 3 times

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes
- Flip a coin 3 times
- Sample Space: The set of all possible outcomes of an experiment

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes
- Flip a coin 3 times
- Sample Space: The set of all possible outcomes of an experiment - \{TTT, HTT, THT, TTH, THH, HTH, HHT, HHH\}

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes
- Flip a coin 3 times
- Sample Space: The set of all possible outcomes of an experiment
- \{TTT, HTT, THT, TTH, THH, HTH, HHT, HHH\}
- Random Variable: Function from the sample space to the real numbers

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes
- Flip a coin 3 times
- Sample Space: The set of all possible outcomes of an experiment
- \{TTT, HTT, THT, TTH, THH, HTH, HHT, HHH\}
- Random Variable: Function from the sample space to the real numbers
- $X=$ number of heads (TTT $\rightarrow 0$, HTT $\rightarrow 1, \mathrm{HHH} \rightarrow 3$, etc.)

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes
- Flip a coin 3 times
- Sample Space: The set of all possible outcomes of an experiment
- \{TTT, HTT, THT, TTH, THH, HTH, HHT, HHH\}
- Random Variable: Function from the sample space to the real numbers
- $X=$ number of heads (TTT $\rightarrow 0$, HTT $\rightarrow 1$, HHH $\rightarrow 3$, etc.)
- Event: A subset of the sample space

Probability Theory: Terminology

- Experiment (Trial): Any procedure that can be infinitely repeated and has a well-defined set of possible outcomes
- Flip a coin 3 times
- Sample Space: The set of all possible outcomes of an experiment
- \{TTT, HTT, THT, TTH, THH, HTH, HHT, HHH\}
- Random Variable: Function from the sample space to the real numbers
- $X=$ number of heads (TTT $\rightarrow 0, \mathrm{HTT} \rightarrow 1, \mathrm{HHH} \rightarrow 3$, etc.)
- Event: A subset of the sample space
- "Even Number of Heads" = \{THH, HTH, HHT, TTT $\}$

Probability of an Event

- Remember, an event is a subset of the sample space

Probability of an Event

- Remember, an event is a subset of the sample space
- The probability of event E in sample space S is ${ }^{|E|} \mid$ |s|

Probability of an Event

- Remember, an event is a subset of the sample space
- The probability of event E in sample space S is ${ }^{|E|} \mid$ |s|
- Example: Flip a coin 3 times. Compute $\mathrm{P}($ even number of H$)$

Probability of an Event

- Remember, an event is a subset of the sample space
- The probability of event E in sample space S is ${ }^{|E|} \mid{ }_{|S|}$
- Example: Flip a coin 3 times. Compute $\mathrm{P}($ even number of H$)$
- "Even Number of $\mathrm{H} "=\{\mathrm{THH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{TTT}\} \rightarrow 4$

Probability of an Event

- Remember, an event is a subset of the sample space
- The probability of event E in sample space S is ${ }^{|E|} \mid{ }_{|s|}$
- Example: Flip a coin 3 times. Compute $\mathrm{P}($ even number of H$)$
- "Even Number of H" $=\{$ THH, HTH, HHT, TTT $\} \rightarrow 4$
- Sample Space $=\{$ TTT, HTT, THT, TTH, THH, HTH, HHT, HHH $\rightarrow 8$

Probability of an Event

- Remember, an event is a subset of the sample space
- The probability of event E in sample space S is ${ }^{|E|} \mid{ }_{|s|}$
- Example: Flip a coin 3 times. Compute $\mathrm{P}($ even number of H$)$
- "Even Number of H" $=\{$ THH, HTH, HHT, TTT $\} \rightarrow 4$
- Sample Space = $\{$ TTT, HTT, THT, TTH, THH, HTH, HHT, HHH $\rightarrow 8$
- $P($ even number of H$)=4 / 8=0.5$

Probability of an Event

- Remember, an event is a subset of the sample space
- The probability of event E in sample space S is ${ }^{|E|} \mid{ }_{|s|}$
- Example: What is the probability of S?
- "Even Number of H" $=\{\mathrm{THH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{TTT}\} \rightarrow 4$
- Sample Space $=\{$ TTT, HTT, THT, TTH, THH, HTH, HHT, HHH $\} \rightarrow 8$
- $\mathrm{P}($ even number of H$)=4 / 8=0.5$

Estimating the Probability of an Event

- The true probability of an event is a theoretical property

Estimating the Probability of an Event

- The true probability of an event is a theoretical property
- It is not always directly visible to us

Estimating the Probability of an Event

- The true probability of an event is a theoretical property
- It is not always directly visible to us
- We can try to estimate the probability of an event from observations

Estimating the Probability of an Event

- The true probability of an event is a theoretical property
- It is not always directly visible to us
- We can try to estimate the probability of an event from observations
- Repeat the experiment as many times as possible

Estimating the Probability of an Event

- The true probability of an event is a theoretical property
- It is not always directly visible to us
- We can try to estimate the probability of an event from observations
- Repeat the experiment as many times as possible
- Count the number of times the event occurred

Estimating the Probability of an Event

- The true probability of an event is a theoretical property
- It is not always directly visible to us
- We can try to estimate the probability of an event from observations
- Repeat the experiment as many times as possible
- Count the number of times the event occurred
- Divide that by the total number of trials

Classifying Text as Positive or Negative

TOP BOX OFFICE		Get Tickets
- 79\%	Good Boys	\$21.4M
- 99\%	Fast \& Furious Presents: Hobb...	\$14.3M
** 52%	The Lion King	\$12.3M
76\%	The Angry Birds Movie 2	\$10.4M
- 81\%	Scary Stories to Tell in the Dark	\$10.1M
- 82\%	Dora and the Lost City of Gold	\$8.7M
** 51\%	47 Meters Down: Uncaged	\$8.4M
- 85\%	Once Upon a Time In Hollywood	\$7.8M
** 43\%	The Art of Racing in the Rain	\$4.7M
- 90\%	Blinded by the Light	\$4.3M

Classifying Text as Positive or Negative

TOP BOX OFFICE

Get Tickets
$\$ 21.4 \mathrm{M}$
99\% Fast \& Furious Presents: Hobb... \$14.3M

* 52\% The Lion King \$12.3M

76\% The Angry Birds Movie 2 \$10.4M

- 81\% Scary Stories to Tell in the Dark
\$10.1M
82\% Dora and the Lost City of Gold
47 Meters Down: Uncaged
Once Upon a Time In Hollywood
The Art of Racing in the Rain
\$8.7M
\$8.4M \$7.8M \$4.7M
- 90%

Blinded by the Light
\$4.3M

Classifying Text as Positive or Negative

- Given a review x, can we classify it as "positive" or "negative"?

Classifying Text as Positive or Negative

- Given a review x, can we classify it as "positive" or "negative"?
- We will select the classification that has higher probability

Classifying Text as Positive or Negative

- Given a review x, can we classify it as "positive" or "negative"?
- We will select the classification that has higher probability
- Prior Probability: Our preliminary belief about the probability of an event prior to collecting any additional data

Example: Prior Probability

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

What is the probability that a randomly-selected student got an A?

Joint Probability

- Joint Probability: The probability that 2 (or more) events all occur

Of 100 students completing a course, 20 were business majors. 10
students received A's in the course, and 3 of these were business majors.

What is the probability that a randomly-selected student is a business student who got an A?

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A		
Grade Not A		

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	
Grade Not A		

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	
Grade Not A		

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	$10-3=7$
Grade Not A		

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	7
Grade Not A		

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	7
Grade Not A		

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	7
Grade Not A	$20-3=17$	

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	7
Grade Not A	17	

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	7
Grade Not A	17	

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	7
Grade Not A	17	$100-3-7-17=73$

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	3	7
Grade Not A	17	73

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Are we done?	s Major
Grade A	3	7
Grade Not A	17	73

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

No! Probabilities sum to 1!

	3	
Grade A	17	73
Grade Not A		

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	$3 / 100=\mathbf{0 . 0 3}$	$7 / 100=\mathbf{0 . 0 7}$
Grade Not A	$17 / 100=\mathbf{0 . 1 7}$	$73 / 100=0.73$

Joint Probability Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

See any problems?

	Business Major	Not Business Major
Grade A	$3 / 100=\mathbf{0 . 0 3}$	$7 / 100=\mathbf{0 . 0 7}$
Grade Not A	$17 / 100=\mathbf{0 . 1 7}$	$73 / 100=\mathbf{0 . 7 3}$

Joint Probability Frequency Table

Of 100 students completing a course, 20 were business majors. 10

Joint Probability Frequency Table

Of 100 studen students rece
But nobody ever cares... These are frequencies!! s. 10
Grade A
Grade Not A

Joint Frequency Table

Of 100 students completing a course, 20 were business majors. 10 students received A's in the course, and 3 of these were business majors.

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

Conditional Probability

- The probability of event A occurring given that event B occurred

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

Conditional Probability
 $P(A \mid B)=P(A, B) / P(B)$

- The probability of event A occurring given that event B occurred

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

Conditional Probability

$P(A \mid B)=P(A, B) / P(B)$

- The probability of event A occurring given that event B occurred
- What's the probability that a random business major got an A ?

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

Conditional Probability

$P(A \mid B)=P(A, B) / P(B)$

- The probability of event A occurring given that event B occurred
- What's the probability that a random business major got an A ?

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

P(Grade A I Business Major)

Conditional Probability

$P(A \mid B)=P(A, B) / P(B)$

- The probability of event A occurring given that event B occurred
- What's the probability that a random business major got an A ?

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

P(Grade A I Business Major) = P(Grade A, Business Major) / P(Business Major)

Conditional Probability

$P(A \mid B)=P(A, B) / P(B)$

- The probability of event A occurring given that event B occurred
- What's the probability that a random business major got an A ?

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

$P($ Grade $A \mid$ Business Major $)=P($ Grade A, Business Major) / P(Business Major)

$$
=0.03
$$

Conditional Probability

$P(A \mid B)=P(A, B) / P(B)$

- The probability of event A occurring given that event B occurred
- What's the probability that a random business major got an A ?

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

P(Grade A I Business Major) = P(Grade A, Business Major) / P(Business Major)

$$
=0.03 /(0.03+0.17)
$$

Conditional Probability

$P(A \mid B)=P(A, B) / P(B)$

- The probability of event A occurring given that event B occurred
- What's the probability that a random business major got an A ?

	Business Major	Not Business Major
Grade A	0.03	0.07
Grade Not A	0.17	0.73

P(Grade A I Business Major) = P(Grade A, Business Major) / P(Business Major)

$$
\text { = } 0.03 /(0.03+0.17)=0.15
$$

Inference

- We can often measure some information
- The Netflix watcher rates what they've already seen
- However, we want to make inferences about things we haven't seen
- Given that you liked movies X and Y, would you like movie Z ?

Bayes' Theorem

$$
\frac{P(B \mid A) P(A)}{P(B)}
$$

Example: Bayes' Theorem

- A breast cancer diagnostic test outputs YES or NO, but it's not perfect

Example: Bayes' Theorem

- A breast cancer diagnostic test outputs YES or NO, but it's not perfect
- Sensitivity $=P(Y E S \mid$ cancer $)=93 \%$

Example: Bayes' Theorem

- A breast cancer diagnostic test outputs YES or NO, but it's not perfect
- Sensitivity $=P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~$
- Specificity $=P($ NO \mid no cancer $)=99 \%$

Example: Bayes' Theorem

- A breast cancer diagnostic test outputs YES or NO, but it's not perfect
- Sensitivity $=P(Y E S ~ I ~ c a n c e r)=93 \%$
- Specificity $=\mathrm{P}(\mathrm{NO} \mid$ no cancer $)=99 \%$
- On average, 0.148% of the population has breast cancer

Example: Bayes' Theorem

- A breast cancer diagnostic test outputs YES or NO, but it's not perfect
- Sensitivity $=P(Y E S ~ I ~ c a n c e r)=93 \%$
- Specificity $=\mathrm{P}(\mathrm{NO} \mid$ no cancer $)=99 \%$
- On average, 0.148% of the population has breast cancer
- What is P(cancer I YES)?

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES		
Test NO		

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES		
Test NO		

P(YES I cancer) = P(YES, cancer) / P(cancer)

Example: Bayes' Theorem

- $P(Y E S ~ I$ cancer $)=93 \%$ and $P(N O \mid$ no cancer $)=99 \%$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	
Test NO		

0.93 = P(YES, cancer) / 0.00148

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	
Test NO		

P(NO I no cancer) = P(NO, no cancer) / P(no cancer)

Example: Bayes' Theorem

- $P(Y E S \mid$ cancer $)=93 \%$ and $P(N O \mid$ no cancer $)=99 \%$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	
Test NO		$\mathbf{0 . 9 8 8 5 3 4 8}$

$$
0.99 \text { = P(NO, no cancer) / (1-0.00148) }
$$

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	
Test NO		0.9885348

0.00148

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	
Test NO	$\mathbf{0 . 0 0 0 1 0 3 6}$	0.9885348

0.00148

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	
Test NO	0.0001036	0.9885348

0.99852

Example: Bayes' Theorem

- $P(Y E S \mid$ cancer $)=93 \%$ and $P(N O \mid$ no cancer $)=99 \%$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	$\mathbf{0 . 0 0 9 9 8 5 2}$
Test NO	0.0001036	0.9885348

0.99852

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	0.0099852
Test NO	0.0001036	0.9885348

P(cancer I YES) = P(cancer, YES) / P(YES)

Example: Bayes' Theorem

- $P(Y E S ~ \mid ~ c a n c e r) ~=93 \% ~ a n d ~ P(N O ~ \mid ~ n o ~ c a n c e r) ~=99 \% ~$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	0.0099852
Test NO	0.0001036	0.9885348

P(cancer | YES) = 0.0013764 / P(YES)

Example: Bayes' Theorem

- $\mathrm{P}(\mathrm{YES} \mid$ cancer $)=93 \%$ and $\mathrm{P}(\mathrm{NO} \mid$ no cancer $)=99 \%$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	+
Test NO	0.0001036	0.0099852

P(cancer | YES) $=0.0013764 / 0.0113616$

Example: Bayes' Theorem

- $P(Y E S \mid$ cancer $)=93 \%$ and $P(N O \mid$ no cancer $)=99 \%$
- $P($ cancer $)=0.148 \%$, so $P($ no cancer $)=1-0.148 \%=99.852 \%$

	Cancer	No Cancer
Test YES	0.0013764	+
Test NO	0.00099852	
12.1%		0.9885348
P(cancer \| YES $)$		$=0.0013764$

Bayes' Theorem for Review Classification

- Given a review, we want to classify it as "positive" (+) or "negative" (-)

Bayes' Theorem for Review Classification

- Given a review, we want to classify it as "positive" (+) or "negative" (-)
- Let S be a random variable denoting the sentiment

Bayes' Theorem for Review Classification

- Given a review, we want to classify it as "positive" (+) or "negative" (-)
- Let S be a random variable denoting the sentiment
- Let R be a random variable denoting the review (a string of text)

Bayes' Theorem for Review Classification

- Given a review, we want to classify it as "positive" (+) or "negative" (-)
- Let S be a random variable denoting the sentiment
- Let R be a random variable denoting the review (a string of text)
- Let x denote a specific given review

Bayes' Theorem for Review Classification

- Given a review, we want to classify it as "positive" (+) or "negative" (-)
- Let S be a random variable denoting the sentiment
- Let R be a random variable denoting the review (a string of text)
- Let x denote a specific given review
- What is $\mathrm{P}(\mathrm{S}=+\mid R=x)$?

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x)=\frac{P(R=x \mid S=+) P(S=+)}{P(R=x)}
$$

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x)=\frac{P(R=x \mid S=+) P(S=+)}{P(R=x)}
$$

Simplifying Assumption \#1: "Bag of Words" Model

- How can we compute (or estimate) $\mathrm{P}(R=x \mid S=+$)?

Simplifying Assumption \#1: "Bag of Words" Model

- How can we compute (or estimate) $\mathrm{P}(R=x \mid S=+$)?
- Bag of Words Model: Represent text (our review x) as a "bag" (collection) of words, disregarding grammar and word order, but
keeping word multiplicity

Simplifying Assumption \#1: "Bag of Words" Model

- How can we compute (or estimate) $\mathrm{P}(R=x \mid S=+)$?
- Bag of Words Model: Represent text (our review x) as a "bag" (collection) of words, disregarding grammar and word order, but keeping word multiplicity

Hi! My name is (what?)
My name is (who?)
My name is Slim Shady

Hi! is is is My My My name name name Slim Shady (what?) (who?)

Simplifying Assumption \#1: "Bag of Words" Model

- To simplify things even further, we won't care about multiplicity

Simplifying Assumption \#1: "Bag of Words" Model

- To simplify things even further, we won't care about multiplicity
- Let $W=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ denote the set of all n possible words

Simplifying Assumption \#1: "Bag of Words" Model

- To simplify things even further, we won't care about multiplicity
- Let $W=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ denote the set of all n possible words
- Let $E=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ denote the "existence" of each word in x

Simplifying Assumption \#1: "Bag of Words" Model

- To simplify things even further, we won't care about multiplicity
- Let $W=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ denote the set of all n possible words
- Let $E=\left[e_{1}, e_{2}, \ldots, e_{n}\right]$ denote the "existence" of each word in x
- Specifically, $e_{i}=$ True if word w_{i} exists in x, otherwise $e_{i}=$ False

Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)
$x=$ My name is (who?)
My name is Slim Shady

Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)

My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema`, "Slim", "Shady", "(what?)", "(who?)"]
```


Simplifying Assumption \#1: "Bag of Words" Model

$$
x=\begin{aligned}
& \text { Hi! My name is (what?) } \\
& \text { My name is (who?) } \\
& \text { My name is Slim Shady }
\end{aligned}
$$

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [
```


Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)

My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False,
```


Simplifying Assumption \#1: "Bag of Words" Model

Hil My name is (what?)
$x=$ My name is (who?)
My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True,
```


Simplifying Assumption \#1: "Bag of Words" Model

$$
x=\begin{aligned}
& \text { Hi! My name is (what?) } \\
& \text { My name is (who?) } \\
& \text { My name is Slim Shady }
\end{aligned}
$$

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True,
```


Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)

My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True,
```


Simplifying Assumption \#1: "Bag of Words" Model

$$
x=\begin{aligned}
& \text { Hi! My name is (what?) } \\
& \text { My name is (who?) } \\
& \text { My name is Slim Shady }
\end{aligned}
$$

$W=[" D r e ", ~ " H i!", ~ " i s ", ~ " M y ", ~ " n a m e ", ~ " N i e m a ", ~ " S l i m ", ~ " S h a d y ", ~ "(w h a t ?) ", ~ "(w h o ?) "] ~$
$E=[$ False, True, True, True, True,

Simplifying Assumption \#1: "Bag of Words" Model

> Hi! My name is (what?) $x=\begin{aligned} & \text { My name is (who?) } \\ & \text { My name is Slim Shady }\end{aligned}$

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False,
```


Simplifying Assumption \#1: "Bag of Words" Model

$$
x=\begin{aligned}
& \text { Hi! My name is (what?) } \\
& \text { My name is (who?) } \\
& \text { My name is Slim Shady }
\end{aligned}
$$

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True,
```


Simplifying Assumption \#1: "Bag of Words" Model

> Hi! My name is (what?)
> $x=$ My name is (who?)
> My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True,
```


Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)
 $x=$ My name is (who?)
 My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True, True,
```


Simplifying Assumption \#1: "Bag of Words" Model

> Hi! My name is (what?)
> $x=$ My name is (who?)
> My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True, True, True]
```


Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)
My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True, True, True]
```

Thus, $\mathrm{P}(R=x \mid S=+)$

Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)
My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True, True, True]
```

Thus, $\mathrm{P}(R=x \mid S=+)=\mathrm{P}(E \mid S=+)$

Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)

My name is Slim Shady
$W=[" D r e ", ~ " H i!", ~ " i s ", ~ " M y ", ~ " n a m e ", ~ " N i e m a ", ~ " S l i m ", ~ " S h a d y ", ~ "(w h a t ?) ", ~ "(w h o ?) "] ~$
$E=[F a l s e, ~ T r u e, ~ F a l s e, ~ T r u e] ~$

Thus, $\mathrm{P}(R=x \mid S=+)=\mathrm{P}(E \mid S=+)=\mathrm{P}\left(\mathrm{e}_{1}=\right.$ False,

Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)
My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True, True, True]
```

Thus, $\mathrm{P}(R=x \mid S=+)=\mathrm{P}(E \mid S=+)=\mathrm{P}\left(e_{1}=\right.$ False, $e_{2}=$ True,

Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)
My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True, True, True]
```

Thus, $\mathrm{P}(R=x \mid S=+)=\mathrm{P}(E \mid S=+)=\mathrm{P}\left(\mathrm{e}_{1}=\right.$ False, $\mathrm{e}_{2}=$ True, \ldots

Simplifying Assumption \#1: "Bag of Words" Model

Hi! My name is (what?)

$x=$ My name is (who?)
My name is Slim Shady

```
W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
E = [False, True, True, True, True, False, True, True, True, True]
```

Thus, $\mathrm{P}(R=x \mid S=+)=\mathrm{P}(E \mid S=+)=\mathrm{P}\left(e_{1}=\right.$ False, $e_{2}=$ True, $\left.\ldots \mid S=+\right)$

Simplifying Assumption \#1: "Bag of Words" Model

Hi! Mv name is (what?)

But how can we learn P(E|S=+)??? iviy name is silm snady

W = ["Dre", "Hi!", "is", "My", "name", "Niema", "Slim", "Shady", "(what?)", "(who?)"]
$E=[F a l s e, ~ T r u e, ~ F a l s e, ~ T r u e] ~$

Thus, $\mathrm{P}(R=x \mid S=+)=\mathrm{P}(E \mid S=+)=\mathrm{P}\left(e_{1}=\right.$ False, $e_{2}=$ True, $\left.\ldots \mid S=+\right)$

Independence

- Two events A and B are independent if the outcome of A has no effect on the outcome of B, and vice-versa

Independence

- Two events A and B are independent if the outcome of A has no effect on the outcome of B, and vice-versa
- $\boldsymbol{A}=$ Number of boba drinks Niema buys in a week

Independence

- Two events A and B are independent if the outcome of A has no effect on the outcome of B, and vice-versa
- $\boldsymbol{A}=$ Number of boba drinks Niema buys in a week
- $\boldsymbol{B}=$ Price of a Shake Shack burger

Independence

- Two events A and B are independent if the outcome of A has no effect on the outcome of B, and vice-versa
- $\boldsymbol{A}=$ Number of boba drinks Niema buys in a week
- $\boldsymbol{B}=$ Price of a Shake Shack burger
- Shake Shack is trash, so it doesn't affect Niema (independent)

Independence

- Two events A and B are independent if the outcome of A has no effect on the outcome of B, and vice-versa
- $\boldsymbol{A}=$ Number of boba drinks Niema buys in a week
- $B=$ Price of a Shake Shack burger
- Shake Shack is trash, so it doesn't affect Niema (independent)
- C = Number of lectures Niema has to give during a week of SPIS

Independence

- Two events A and B are independent if the outcome of A has no effect on the outcome of B, and vice-versa
- $\boldsymbol{A}=$ Number of boba drinks Niema buys in a week
- $B=$ Price of a Shake Shack burger
- Shake Shack is trash, so it doesn't affect Niema (independent)
- $\mathbf{C}=$ Number of lectures Niema has to give during a week of SPIS
- Stressed Niema likes boba, so A and C are dependent

Independence

- Two events A and B are independent if the outeome of A has no effect on the outeone of B, and vice versa iff $P(A, B)=P(A) \times P(B)$
- A = Number of boba drinks Niema buys in a week
- $B=$ Price of a Shake Shack burger
- Shake Shack is trash, so it doesn't affect Niema (independent)
- $C=$ Number of lectures Niema has to give during a week of SPIS
- Stressed Niema likes boba, so A and C are dependent

Ind

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

- Two events A and B are independent if the outeome-of A has no effect on the outcome of B, and vice-versa iff $P(A, B)=P(A) \times P(B)$
- $A=$ Number of boba drinks Niema buys in a week
- $B=$ Price of a Shake Shack burger

■ Shake Shack is trash, so it doesn't affect Niema (independent)

- C = Number of lectures Niema has to give during a week of SPIS
- Stressed Niema likes boba, so A and C are dependent

Conditional Independence

- Let A and B be two dependent events

Conditional Independence

- Let A and B be two dependent events
- $A=$ Number of boba drinks Niema buys in a week

Conditional Independence

- Let A and B be two dependent events
- $A=$ Number of boba drinks Niema buys in a week
- $B=$ Week number of SPIS

Conditional Independence

- Let A and B be two dependent events
- $A=$ Number of boba drinks Niema buys in a week
- $B=$ Week number of SPIS
- Let C be a third event

Conditional Independence

- Let A and B be two dependent events
- $A=$ Number of boba drinks Niema buys in a week
- $B=$ Week number of SPIS
- Let C be a third event
- \quad = Number of lectures Niema has to give during a week of SPIS

Conditional Independence

- Let A and B be two dependent events
- $A=$ Number of boba drinks Niema buys in a week
- $B=$ Week number of SPIS
- Let C be a third event
- C = Number of lectures Niema has to give during a week of SPIS
- A and B are conditionally independent given C iff $\mathbf{P}(\mathbf{A} \mid \mathbf{B}, \mathbf{C})=\mathbf{P}(\mathbf{A} \mid \mathbf{C})$

Simplifying Assumption \#2: Conditional Independence

- We wanted to estimate $P(E \mid S=+)=P\left(e_{1}=\right.$ False, $e_{2}=$ True,.. $\left.\mid S=+\right)$

Simplifying Assumption \#2: Conditional Independence

- We wanted to estimate $P(E \mid S=+)=P\left(e_{1}=\right.$ False, $e_{2}=$ True, $\left.\ldots \mid S=+\right)$
- Given that the sentiment is positive, $e_{1}=$ False, $e_{2}=$ True, etc. are all conditionally independent

Simplifying Assumption \#2: Conditional Independence

- We wanted to estimate $P(E \mid S=+)=P\left(e_{1}=\right.$ False, $e_{2}=$ True, $\left.\ldots \mid S=+\right)$
- Given that the sentiment is positive, $e_{1}=$ False, $e_{2}=$ True, etc. are all conditionally independent
- $P(E \mid S=+)=P\left(e_{1}=\right.$ False $\left.\mid S=+\right) \times P\left(e_{2}=\right.$ True $\left.\mid S=+\right) \times \ldots$

Simplifying Assumption \#2: Conditional Independence

- We wanted to estimate $P(E \mid S=+)=P\left(e_{1}=\right.$ False, $e_{2}=$ True, $\left.\ldots \mid S=+\right)$
- Given that the sentiment is positive, $e_{1}=$ False, $e_{2}=$ True, etc. are

Yay! We can learn these from data!!!

- $P(E \mid S=+)=P\left(e_{1}=\right.$ False $\left.\mid S=+\right) \times P\left(e_{2}=\right.$ True $\left.\mid S=+\right) \times \ldots$

Simplifying Assumption \#2: Conditional Independence

- We wanted to estimate $P(E \mid S=+)=P\left(e_{1}=\right.$ False, $e_{2}=$ True, $\left.\ldots \mid S=+\right)$
- Given that the sentiment is positive, $e_{1}=$ False, $e_{2}=$ True, etc. are

Yay! We can learn these from data!!!

- $P(E \mid S=+)=P\left(e_{1}=\right.$ False $\left.\mid S=+\right) \times P\left(e_{2}=\right.$ True $\left.\mid S=+\right) \times \ldots$
- Get a bunch of reviews, construct a vocabulary W of all unique words, and count the proportion of positive reviews containing w_{i}

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x)=\frac{P(R=x \mid S=+) P(S=+)}{P(R=x)}
$$

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x)=\frac{P(R=x \mid S=+) P(S=+)}{P(R=x)}
$$

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x)=\frac{P(R=x \mid S=+) P(S=+)}{P(R=x)}
$$

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x)=\frac{P(R=x \mid S=+) P(S=+)}{P(R=x)}
$$

This is just the proportion of reviews that were positive

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x)=\frac{P(R=x \mid S=+) P(S=+)}{\mid P(R=x)}
$$

Bayes' Theorem for Review Classification

$$
P(S=+\mid R=x) \propto \propto P(R=x \mid S=+) P(S=+)
$$

Don't care $\ddot{\theta} \cdot \boldsymbol{\theta}$

